Machine Learning in Quantum Science

This manifesto is a call for European funding of research at the interface of machine
learning (ML) and quantum science as a foundation of future key technologies.

Why machine learning in quantum science?

The origins of the on-going machine learning revolution can be traced back to the
rapid development of unprecedented computational power in combination with the
availability of large data following the advent of the internet. Machine learning has
already started shaping our everyday lives, as evidenced not least by powerful
language models such as chatGPT. At the same time, it is being used ubiquitously
bringing new advances across various disciplines, including the natural sciences,
where it is, e.g., revolutionising the prediction of protein folding.

A prime match for the machine-learning revolution is quantum science, which is a
thriving research field with near-term applications of huge impact, including quantum
technologies as well as new functional materials for renewable energy systems or
molecules that can serve as drugs or fertilisers. It is becoming apparent that machine
learning techniques can greatly boost these activities and push them to another level
of efficiency. Besides developments with foreseeable applications, machine learning
techniques have the potential to also shape our approach to fundamental physics.

Quantum physics is a data- and computation-intensive science that naturally
matches the proven strengths of modern machine learning tools. Conversely,
quantum devices can be used to process and analyse data in radically new ways
and thus have the unique potential to bring the inner workings of machine learning to
a fundamentally different level. For these reasons, research at the close interface of
quantum science and machine learning should be given particular consideration and
attention.

What advances are to be expected?

Quantum science has the potential for a large impact by providing the tools to
discover new molecules or exotic materials. However, the exponential complexity of
quantum systems makes this research program a formidable challenge. Therefore,
quantum computing and quantum simulation on dedicated quantum hardware are a
promising route to tackle these challenges. While this route is rapidly developing, it is
currently still limited to noisy intermediate-scale quantum devices.

Machine learning will make a difference by boosting the full stack of quantum
computing ranging from hardware to software. On the hardware side, machine
learning techniques can be employed to automate and accelerate the parallel
calibration and optimisation of the qubits. On the software side, it provides new
means to discover or optimise quantum algorithms and develop compressed



error-correction codes via reinforcement learning or through other variational
methods. First examples have demonstrated the power of such approaches and call
for further research.

Discovery and optimisation of quantum experiments

While several algorithms with potential quantum advantage exist, their number is
still surprisingly small considering the amount of attention to the field - likely,
because quantum physics is intrinsically unintuitive for humans. Therefore,
variational quantum algorithms or other forms of quantum machine learning have
been identified as a promising route to discover new algorithms. Moreover, the
routine operation of quantum computers will require new approaches for device
design, readout, efficient compilation, detection of noise mechanisms, and error
correction. One example of enhanced compilation are ML models that can
autonomously learn generic strategies to compress quantum circuits (see figure).
This illustrates that the machine learning toolbox provides manifold ingredients that
can boost the hybrid quantum-classical operation for these purposes.

In addition, ML is one of the most prominent tools for an efficient interface between
classical and quantum systems both for experiment discovery and control as well
as for the translation of classical data into a quantum state and the transpilation of
classical into quantum algorithms. ML algorithms operating in hybrid
classical-quantum hardware will also allow us to harness properties of quantum
systems to devise energy-efficient control tasks.

Concrete examples of ML applications:
e Cross-architecture optimisation of quantum devices and quantum
experiments
e Hybrid quantum-classical devices and control protocols
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Figure: T. Fosel, M. Y. Niu, F. Marquardt & L. Li. arXiv:2103.07585 (2023)

A second route to applications is currently emerging in the form of advanced ab-initio
computational methods enhanced by machine learning: the efficient simulation of
certain important classes of complex materials and molecules has come within reach
of classical simulations. Ab-initio methods, such as neural-network quantum states,
are pushing the state of the art of computational methods, already offering superior
precision for some particularly elusive quantum states of matter. This research
direction not only demonstrates the key importance of machine learning algorithms
for computational quantum science; it also opens new perspectives on the
fundamental question of what kind of quantum states can be efficiently represented
classically, which is of great importance to quantum information science.



Simulation of quantum systems

The simulation of quantum many-particle systems on classical computers is one of
the greatest challenges in physics, but extremely important for advances in
developing functional materials. It has been demonstrated for a wide range of
traditional ab initio methods how machine learning components can be
incorporated for their advancement. One example is the encoding of the quantum
wave function in the form of artificial neural networks (see figure on the left), which
was found to efficiently capture complex quantum states. These methods are
currently pushing the state of the art and may be applied to outstanding problems
such as high-temperature superconductivity and chemical reaction dynamics.

By combining domain-specific knowledge of quantum mechanics with ML
techniques, physics-aware ML can improve the accuracy and interpretability of
predictions and models for quantum systems. One example of this is the learning
of the hidden disorder landscape of a quantum device (see figure on the right).
Developing explainable Al for quantum physics could foster the adoption of
quantum machine learning techniques as the paradigm for digital twinning of
quantum systems, as well as identify new instances of quantum systems, which
are out of reach to simulate with classical ML resources.

Concrete examples of ML applications:
e Neural quantum states
e Automated tailoring of properties of quantum materials
e Digital twins for quantum systems
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In view of applications as well as fundamental research, data from quantum systems
is particularly complex and hard to analyse, since any individual measurement can
only provide partial information about the quantum wave function. In traditional
approaches information extraction has been guided by experience and physical
intuition. Recent work has shown that machine learning tools are very fruitful to
further develop our understanding of such data, for example by opening new
perspectives through data mining. Leveraging machine learning techniques for
pattern recognition and anomaly detection facilitated the identification of quantum
phase transitions and similar approaches might allow us to discover unexpected
types of order parameters for the characterisation of quantum matter.



With their proven capabilities in strategy discovery, machine learning tools are also
extremely powerful for control and feedback cycles of experimental setups and
quantum hardware. First examples range from optimised quantum gates on a
quantum chip to the faster preparation of atomic Bose-Einstein condensates as a
starting point for quantum simulation experiments. Machine learning algorithms open
new possibilities to incorporate real-time feedback, the consequences of which we
are just starting to understand.

Analysis of quantum data

Data from quantum systems is particularly complex and hard to analyse. For
instance, in quantum many-body systems, such as correlated electrons in
solid-state systems, the relevant order at the basis of their functionality is often
hard to extract. Recently it was found that machine learning tools can guide and
extend such analysis by an unbiased exploration of all information. For example,
artificial neural networks can be used to identify the relevant correlations from
snapshots of quantum many-body systems on a lattice (see figure). This can result
in the unbiased identification of the essential observables, which is particularly
important in noisy settings or for exotic order, where traditional methods fail. In
turn, generative modelling can provide crucial support in enriching data from
quantum systems where extracting measurements is hardly accessible
experimentally, or is particularly time consuming. For that purpose, interpretable
and explainable machine learning models will be of particular use to facilitate the
discovery and understanding of such new observables.

Concrete examples of ML applications:

e Discovering correlations and symmetries in quantum experiments
e Physics insights through explainable Al and Al-assisted discovery
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Conversely, quantum physics can also feed back to the machine-learning community
by providing a vast experience in computational methods. Tailoring new algorithmic
tools to the unique challenges of quantum research will enable the creation of
synergies that can lead to significant advancements in both fields. For example, the
scientific applications will lead to advancements for interpretability and uncertainty



quantification of machine learning algorithms that are rooted in the physical domain.
Finally, the combination of the fields can lead to a quantum machine learning
paradigm that leverages quantum hardware for novel machine learning algorithms
themselves. For this to be fruitful, the development of tailored hardware for quantum
machine learning protocols will be important.
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For example, the fully automated tuning of quantum-dot devices faster than human
experts was demonstrated. It was also demonstrated in a recent work that the
automated optimisation of entangling operations on a superconducting quantum
processor could substantially improve their quality (see figure), which is crucial for
near-term applications. ML will accelerate the process of quantum state
preparation, gate operations, and measurement, leading to faster and more
efficient quantum computation or quantum communication protocols. Thus, the ML
toolbox can be employed to extend the applicability of quantum devices to
problems with many noisy parameters such as imaging, radar, or gravitational
wave detection. ML methods can readily be utilised to characterise noise sources.

By facilitating the exploration of large parameter spaces, ML can also be used to
design optimised experimental setups for specific quantum tasks, such as quantum
communication or quantum computing.

Concrete examples of ML applications:

e Efficient characterisation, tuning, design, and control of quantum
experiments

e Mitigation and harnessing noise in quantum systems

e Cross-architecture optimisation of quantum devices; cross-platform
certification




Key considerations in applying machine learning to quantum science and technology
are trust, robustness, interpretability, and explainability. While neural networks (NNs)
have shown their power in various applications, their lack of transparency hinders
the safe and reliable application of these algorithms to valuable quantum systems.
Striking a delicate balance between leveraging advanced algorithms and mitigating
risks is crucial for instilling confidence in automated control systems.

Safety and reliability of controllers

Safe and reliable application of NN controllers is highly relevant to all fields
impacted by automation. To maintain control and ensure device safety, methods
must be developed to trust, verify, and potentially limit their capabilities.

Verification: In safety-critical environments, using ML models without verification is
infeasible. To reduce the risk of unsafe ML control behaviour, the challenge lies in
verifying both the NN controller and the quantum architectures as a cohesive
system.

Robustness: Given the inherent noise and slight variations in experimental
environments, ensuring the robustness of ML algorithms is paramount. The
challenge is to provide robustness analysis for NN controllers, guaranteeing that
even small changes in inputs lead to proportional changes in outputs.
Interpretability: An interpretable ML model should empower experts to tune the
algorithm post-training based on their knowledge. Neglecting the expertise gained
from conducting experiments would be unfortunate. Addressing the challenge
involves building interpretable ML models that allow parameter adaptation by
experts.

Explainability: Gaining insights into the decision-making process of NN controllers
is valuable when employing them. An intriguing challenge to ensure ML model
trustworthiness is obtaining explanations of control outputs in understandable
human terms.

Additionally, interpretability and explainability of ML in quantum science are critical
for uncovering decision mechanisms used by NNs when addressing complex
quantum problems. To drive scientific discovery, it is vital to not only comprehend the
outputs generated by ML algorithms, but to also understand the underlying principles
and concepts that guide their reasoning. Understanding the factors contributing to a
model's predictions allows scientists to assess reliability, validate solutions, and
identify biases and errors in training data. Ultimately, this improves the robustness of
quantum simulations and predictions. Further, extracting human-understandable
knowledge from ML models is pivotal for driving breakthroughs in quantum science
and technology. Efficient implementation of approaches that effectively contribute to
validating findings, uncovering novel insights, and advancing quantum science
through new discoveries is a significant challenge.



What needs to be done to unleash these synergies?

We believe it is now the right time to invest in research at this emerging interface of
quantum science and machine learning so that the European Union (EU) can remain
competitive with the US, Canada, and China in developing next-generation quantum
technology. Patents for machine learning applications in quantum computing are
already picking up speed, but mostly in the US." The quantum flagship has put
Europe in a strong position and a broad funding initiative for machine learning in
quantum science will enable Europe to take on the lead in these new developing
technologies.

Funding needs to be both for fundamental and applied research projects in order to
cover the full spectrum of developments. While the applications for optimal control
are already being prepared for commercial exploitation by the first start-ups, ab initio
computational methods are in a more exploratory phase, which requires funding of
purely fundamental research for unleashing the full potential. The same holds for
other applications such as the analysis of quantum data arising from experiments
that might turn out seminal for our understanding of physics or for future
technologies.

Facilitating the exchange between the ML and the quantum physics communities
has the potential to transform both fields and interdisciplinary teams are needed to
push beyond current boundaries. At the core of our initiative is the merging of
diverse communities, to bring together a heterogeneous range of views and ensure
openness and diversity. For quantum science and technology to synergise with the
field of ML and artificial intelligence, we shall need to bring together quantum
experimentalists, quantum theorists, ML engineers, computer scientists, but also
entrepreneurs and investors.

Open-source software, freely available and standardised benchmark data sets,
model databases, and community challenges were central for the rapid
advancement of machine learning techniques. Building on this experience, we
believe that creating a similar ecosystem for machine learning in quantum science
will likewise boost progress by removing barriers for interdisciplinary collaboration
and optimally tapping the available potential. To this end, it is necessary to
standardise quantum physics problems through interoperable and structured
interfaces. Their role will be to enable sharing of experimental data and translating
quantum physics problems into a common ML language. On the one hand,
standardisation will enhance the applicability of ML methods in both theoretical and
experimental quantum physics, thus improving reusability, reproducibility, and
comparability. On the other hand, the development of community-driven projects will
create shared spaces, which provide interfaces as tutorials or documentations that

' See the Quantum Computing Insight Report of the European Patent Office, page 36.



help students and researchers to familiarise and strengthen cohesion between fields,
and encourage interdisciplinary collaboration and cross fertilisation.

Progress in this rapidly developing field requires the training of a next generation of
researchers with expertise in quantum science and machine learning, e.g., via
suitable doctoral networks. Additional training and educational resources, such as
dedicated online platforms and training resources, and encouraging cross-field
conferences and symposia, will simplify the access to state-of-the-art ML and further
encourage its widespread adoption by quantum scientists. This can bridge the gap
between theory and experiment, by facilitating a more seamless integration of
theoretical modelling and experimental data analysis. Such educational programmes
at the interface of quantum science and machine learning will produce a workforce
that is highly skilled in both forward-looking fields. This is not only fruitful for
fundamental research, but also essential to keep replenishing industry with
open-minded experts who transfer knowledge into competitive products and
services.

Social media and science-communication strategies, as well as collaborations with
creators, developers, and industry partners, will play a key role in making machine
learning techniques in quantum physics beneficial to all of society. By placing
engagement at the centre of the research process we shall bridge boundaries
between disciplines, facilitate the exchange of valuable knowledge with industry
partners and policy makers, and improve the public perception of quantum science.
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